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Abstract: The concept complete convergence was introduced in 1947 by Hsu and Robbins who

proved that the sequence of arithmetic means of i.i.d. random variables converges completely to

the expected value of the variables provided their variance is finite. The complete convergence of

dependent random variables has been investigated by several authors, for example, Amini M. and

Bozorgnia A. (2003), Li, Y.X. and Zhang, L. (2004), Chen, P. et al. (2007), Amini, M. et al. (2007),

Wu, Q.Y. (2010), Ko, M.H. (2011), Amini, M. et al. (2012), Wang, X. et al. (2012), Yang, W. et al.

(2012), Sung, S.H. (2012), Shen, A.T. et al.(2013) Wang, X. et al. (2014), Amini, M. et al. (2015),

Wang, X. et al. (2015), Amini, M. et al. (2016), Deng, X. et al. (2016), and Amini, M. et al. (2017).

In general, the main tools to prove the complete convergence of some random variables are based

on Borel-Cantelli lemma and the moment inequality or the exponential inequality. However, for

some dependent sequences (such as weakly negative dependent (WND) and negative superadditive-

dependent random (NSD) sequence), whether these inequalities hold was not known. In this talk,

we review complete convergence as historically from i.i.d. sequences to dependent sequences. In

particular, complete convergence for weighted sums of weakly negative dependent are provided

and applied to empirical distribution, sample p-th quantile and random weighting estimate. Also,

the complete convergence is established for weighted sums of negatively superadditive-dependent

random variables. Moreover, under the condition of integrability and appropriate conditions on

the array of weights, the conditional mean convergence and conditional almost sure convergence

theorems for weighted sums of an array of random variables are obtained when the random variables

are special kind of dependence. As, some applications, complete convergence for weighted sums,

moving average processes and the complete consistency of LS estimators in the EV regression

model with NSD errors is investigated.
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1 Introduction

One of the dependence structure that has attracted the interest of probabilist and statisticians is

negative superaditive, we are interested in concept of conditional dependence, namely the concept

of conditional negative superaditive dependence. The concept of conditional negative superadditive

dependence is an extension to the conditional case of the concept of negative superadditive depen-

dence introduced by Hu (2000) which was based on the class of superadditive functions. In this

work, we extend the notion of (r, h)-integrable of {Xnk} with respect to constants weights {ank}

to the corresponding conditional notion in the more general setting of randomly weighted sum of

random variables (i.e., to the case in which the weights are also random variables {Ank}) when a

sequence of conditioning σ-algebras {Fn}. We then obtain some results on conditional convergence

of these sums given the conditioning σ-algebras of events {Fn} that extend, in a substantial way,

the main mean convergence theorems in Ordóñez et al. (2012).

All events and random variables are defined on the same probability space (Ω,A, P ). Through-

out, F and Fn, n ≥ 1 be sub-σ-algebras of A and we denote by EF (X) the conditional expectation

of the random variable X relative to F , and by PF (A) the conditional probability of the event

A ∈ A relative to F . Roussas (2008) provides a detailed proof of an integral representation of the

covariance of two random variables, a brief proof of which is available in Lehmann (1966). The

first propositions come from Roussas (2008).

Proposition 1.1. Let random variables X and Y be have finite second moments. Then their

conditional covariance, given F , is defined by

CovF (X,Y ) = EF [(X − EFX)(Y − EFY )].

By applying a conditional version of the Fubini theorem, Roussas (2008) obtains the following

integral representation for the conditional covariance of two random variables:
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Proposition 1.2. let X and Y be random variables with EX2 <∞. Then

CovF (X,Y ) =

∫
R2

HF (x, y)dx dy a.s.,

where HF (x, y) = PF [X ≤ x, Y ≤ y]− PF [X ≤ x]PF [Y ≤ y].

Proposition 1.3. If the integrable random variables X and Y are F-independent, then

EF (XY ) = EF (X)EF (Y ) a.s.,

and similarly for any finite number of random variables, i.e.

EF (Πni=1Xi) = Πni=1E
F (Xi).

We now present the basic definitions and results concerning conditional negative superadditive

dependence.

Definition 1.4. (Ordóñez et al. 2012). Random variables X and Y are said to be conditionally

negative quadrant dependent relative to a σ-algebra F (F-CNQD) if

PF [X ≤ x, Y ≤ y] ≤ PF [X ≤ x]PF [Y ≤ y] a.s. for all x, y ∈ R.

A sequence of random variables {Xn,≥ 1} is said to be pairwise conditionally negative quadrant

dependent relative to a σ-algebra F if every pair of random variables in the sequence is F−CNQD.

Definition 1.5. (Kemperman, 1997). The function ϕ : Rm → R is called superadditive if ϕ(x ∨

y) + ϕ(x ∧ y) ≥ ϕ(x) + ϕ(y) for all x,y ∈ Rm, where ∨ and ∧ are for componentwise maximum,

respectively.

Lemma 1.6. (Kemperman, 1997). If ϕ has continuous second partial derivatives, then superad-

ditivity of ϕ is equivalent to ∂2ϕ/∂xi∂yj ≥ 0, 1 ≤ i ̸= j ≤ m.

Remark 1.7. By Lemma 1.6, when {xi} are non-negative real numbers, for all n ≥ 2 and non-

negative integer s, the function ϕ(x1, x2, · · · , xn) = (Πnk=1xk)
s
is a superadditive function.

Now we give a new definition that it’s relationship with the definition 1.4 will be mentioned in

Proposition 2.2.
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Definition 1.8. Random variables X and Y are said to be conditionally negative superadditive

dependent relative to a σ-algebra F (F-CNSD) if

EF (ϕ(X,Y )) ≤ EF (ϕ(X∗, Y ∗)),

where X∗, Y ∗ are independent with X =d X∗, Y =d Y ∗ and ϕ is a superadditive function that the

expectations exist.

A sequence of random variables {Xn,≥ 1} is said to be pairwise conditionally negative supper-

additive dependent relative to a σ-algebra F if every pair of random variables in the sequence is

F − CNSD.

Note that if F = {ϕ,Ω}, then a sequence of pairwise F-CNSD random variables is precisely a se-

quence of random variables which are negative superadditive dependent (NSD) in the unconditional

case.

In the following, {un, n ≥ 1} and {vn, n ≥ 1} will be two sequences of integers (not necessary

positive or finite) such that vn ≥ un for all n ≥ 1 and vn − un → ∞ as n → ∞. Moreover,

{h(n), n ≥ 1} will be a sequence of positive constants with h(n) ↑ ∞ as n→∞.

The notion of uniform integrability plays the central role in establishing Lr convergence and weak

laws of large numbers. The classical notion of uniform integrability of a sequence {Xn, n ≥ 1} of

integrable random variables is defined through the condition

lim
a→∞

sup
n≥1

E|Xn|I(|Xn| > a) = 0.

The concept of the uniform integrability has been generalized and extended in several directions

for details see Cao (2013). We now introduce a new concept of integrability as follow:

Definition 1.9. Let r > 0, {Xnk, un ≤ k ≤ vn, n ≥ 1} and {Ank, un ≤ k ≤ vn, n ≥ 1} be two

arrays of random variables.The array {Xnk} is said to be conditionally residually (r,h)- integrable

relative to Fn (Fn-CR-(r,h)-integrable), concerning the array {Ank} if the following conditions

hold:

(a) sup
n≥1

vn∑
k=un

|Ank|rEFn |Xnk|r <∞ a.s.,
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(b) lim
n→∞

vn∑
k=un

|Ank|rEFn(|Xnk| − h(n))rI[|Xnk| > h(n)] = 0 a.s.

It’s easily seen that If Ank ≡ ank are constants, and Fn = {ϕ,Ω} for all n ∈ N , we have the

concept of residual (r,h)-integrability concerning the array of constants {ank}.

Remark 1.10. The Fn-CR-(r,h)-integrable concerting the arrays {Ank} is weaker than the Fn-

(1,h)-integrable concerting the arrays {Ank} who defined by Ordóñez et al (2012).

2 Conditional mean convergence for randomly weighted sums

In order to prove the main results in this section and next sections, we first present some

immediate consequences.

Lemma 2.1. Let (X,Y ) be a random vector with joint conditionally distribution function HF

and marginal conditionally distribution functions FF and GF and let (X∗, Y ∗) be a random vec-

tor with joint conditionally distribution function H∗F (x, y) = FF (x)GF (y). Suppose that ϕ is a

superadditive function from R2 to R such that EFϕ(X,Y ) and EFϕ(X∗, Y ∗) exist. Then

EFϕ(X,Y )− EFϕ(X∗, Y ∗) =

∫
R2

[HF (x, y)− FF (x)GF (y)] dϕ(x, y).

Where FF (x) = PF (X ≤ x) and GF (y) = PF (Y ≤ y).

Proof: The proof is inspired by Theorem 2.1 of Molina (1992). Let (X1, Y1) and (X2, Y2) be inde-

pendent and identically distributed with joint conditionally distribution function HF and marginal

conditionally distribution functions FF and GF that (X1, Y2) and (X2, Y1) have the joint condi-

tionally function FF (x).GF (y). It can be checked that

ϕ(X1, Y1)− ϕ(X1, Y2)− ϕ(X2, Y1) + ϕ(X2, Y2)

=

∫
R2

[I(X1 > t)− I(X2 > t)][I(Y1 > s)− I(Y2 > s)] dϕ(t, s).

Since (X1, Y2) and (X1, Y2) are independent and identically distributed , to get

EF [ϕ(X1, Y1)− ϕ(X1, Y2)− ϕ(X2, Y1) + ϕ(X2, Y2)]

= 2[EFϕ(X1, Y1)− EFϕ(X1, Y2)]

= 2[EFϕ(X,Y )− EFϕ(X∗, Y ∗)]
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By Theorem 4.1 in Roussas (2008) (A conditional version of the Fubini Theorem), we have

EF
∫
R2

[I(X1 > t)− I(X2 > t)][I(Y1 > s)− I(Y2 > s)] dϕ(t, s)

=

∫
R2

EF [I(X1 > t)− I(X2 > t)][I(Y1 > s)− I(Y2 > s)] dϕ(t, s)

= 2

∫
R2

[PF (X1 > t, Y1 > s)− PF (X1 > t)PF (Y2 > s)] dϕ(t, s)

= 2

∫
R2

[PF (X1 ≤ t, Y1 ≤ s)− PF (X1 ≤ t)PF (Y2 ≤ s)] dϕ(t, s).

This completes the proof.

Proposition 2.2. For random variable vector (X,Y ),

F − CNSD(X,Y )⇔ F − CNQD(X,Y ).

Prooof: Since ϕ(x, y) = I(x ≤ t, y ≤ s) for fixed real value t and s, is a superadditive function,

hence, F-CNSD⇒ F-CNQD. The inverse valids by Lemma 2.1 and Definition 1.4.

Remark 2.3. It’s obvious from Proposition 1.2 that if F − CNQD(X,Y ) then CovF (X,Y ) ≤ 0.

Proposition 2.4. If (X1, X2) is F-CNSD and g1, g2 are increasing functions, then (g1(X1), g2(X2))

is F-CNSD.

Now, we state the main result and prove that.

Theorem 2.5. Suppose {Xnk, un ≤ k ≤ vn, n ≥ 1} be an array of row-wise pairwise Fn-CNSD

random variables. Let {Ank, un ≤ k ≤ vn, n ≥ 1} be an array of non-negative random variables

such that, for each n ∈ N , the sequence {Ank, un ≤ k ≤ vn} are Fn-measurable. Assume that the

following conditions hold:

(i) {Xnk, un ≤ k ≤ vn, n ≥ 1} is Fn-CR-(r,h)-integrable concerning the array {Ank} with

exponent 0 < r ≤ 1,

(ii) h(n)(supun≤k≤vn Ank)→ 0 a.s. as n→∞.

Let Sn =
∑vn
k=un

Ank(Xnk − EFnXnk), n ≥ 1. Then EFn |Sn|r → 0 a.s. as n→∞.

Proof: Consider continuous truncation, for un ≤ k ≤ vn, n ≥ 1,

X
′

nk = −h(n)I[Xnk ≤ −h(n)] +XnkI[|Xnk| ≤ h(n)] + h(n)I[Xnk > h(n)],
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Moreover, denote

S1n =

vn∑
k=un

Ank(Xnk −X
′

nk), S2n =

vn∑
k=un

Ank(X
′

nk − EFnX
′

nk), S3n =

vn∑
k=un

AnkE
Fn(X

′

nk −Xnk).

we write

Sn = S1n + S2n + S3n, n ≥ 1,

and we can estimate the conditional expectation of each of these terms separately.

3 Conditional almost sure convergence for randomly weighted

sums

To obtain a conditional strong convergence result, we introduce the concept of strongly condition-

ally residually (r,h)- integrable relative to Fn with exponent r as follows.

Definition 3.1. Let r > 0, {Xnk, un ≤ k ≤ vn, n ≥ 1} and {Ank, un ≤ k ≤ vn, n ≥ 1} be two

arrays of random variables.The array {Xnk} is said to be conditionally strongly residually (r,h)-

integrable relative to Fn (Fn-CSR-(r,h)-integrable), concerning the array {Ank} if the following

conditions hold:

(a) sup
n≥1

vn∑
k=un

|Ank|rEFn |Xnk|r <∞ a.s.,

(b)
∞∑
n=1

vn∑
k=un

|Ank|rEFn(|Xnk| − h(n))rI[|Xnk| > h(n)] <∞. a.s.

Remark 3.2. If Ank ≡ ank are constants, and Fn = {ϕ,Ω} for all n ∈ N , the preceding definition

reduce to the following new concept of strongly residually (r,h)- integrable concerning the array of

constants {ank}.

Definition 3.3. Let r > 0, {Xnk, un ≤ k ≤ vn, n ≥ 1} and {ank, un ≤ k ≤ vn, n ≥ 1} an array

of constants. The {Xnk} is said to be strongly residually (r,h)- integrable (SR-(r,h)-integrable, for

short) concerning the array {ank} if the following conditions hold:

(a) sup
n≥1

vn∑
k=un

|ank|rE|Xnk|r <∞ a.s.,

(b)

∞∑
n=1

vn∑
k=un

|ank|rE(|Xnk| − h(n))rI[|Xnk| > h(n)] <∞. a.s.
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We will now establish a strong version of Theorem 2.5 under the condition of F-CNSD inte-

grability (i.e., when Bn ≡ B, a sub-σ- algebra of A, for all n ≥ 1).

Theorem 3.4. Suppose {Xnk, un ≤ k ≤ vn, n ≥ 1} be an array of row-wise pairwise F-CNSD

random variables. Let {Ank, un ≤ k ≤ vn, n ≥ 1} be an array of non-negative random variables

such that, for each n ∈ N , the sequence {Ank, un ≤ k ≤ vn} are F-measurable. Assume that the

following conditions hold:

(i) {Xnk, un ≤ k ≤ vn, n ≥ 1} is F-CSR-(r,h)-integrable concerning the array {Ank} with

exponent 0 < r < 1,

(ii)
∑∞
n=1

(
hr(n)(supun≤k≤vn Ank)

)1−r
<∞ a.s.

Then Sn =
∑vn
k=un

Ank(Xnk − EFXnk)→ 0 a.s. as n→∞.

Proof: We use the same notations as those in Theorem 2.5 and, set Fn = F for each n ∈ N .

Then Sn = S1n + S2n + S3n for each n ∈ N and, we estimate each of these terms separately.

In the following, using Theorem 3.1 we obtain a conditional mean convergence. We assume

that {Yi,−∞ < i < ∞} is a doubly infinite sequence of identically distributed random variables

with E|Y1| <∞. Let {ai,−∞ < i <∞} be an absolutely summable sequence of real numbers and

Xk =
∞∑

i=−∞
aiYk+i, n ≥ 1

be the moving average process based on the sequence {Yi,−∞ < i <∞}.

Asymptotic behavior for the moving average process {Xk; k ≥ 1} have been studied by many

authors such as Li et al. (1992), Sung (1999), Sadeghi and Bozorgnia (1994) and Amini et al.

(2015).

We will now establish mean convergence under condition F-CNSD (i.e. when Fn = F , a sub-σ-

algebra of A, for all n ∈ N )

Theorem 3.5. Let {Xn, n ≥ 1} be a moving average process based on a sequence {Yi,−∞ < i <

∞} of identically distributed pairwise F-CNSD random variables. Let Sn = n−1
∑n
k=1(Xk − EFXk),

n ≥ 1.

(i) If EF |Y1| <∞, then EF |Sn| → 0 a.s. as n→∞.
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(ii) If
∑∞
n=1E

F |Y1|I[|Y1| > h(n)] <∞, then Sn → 0 a.s. as n→∞.
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